
IJCSC Volume 5 • Number 1 March-Sep 2014 pp. 143-146 ISSN-0973-7391�

143

Parallelization of Synthetic Aperture Radar (SAR)
Imaging Algorithms on GPU

Bhaumik Pandya, Dr. Nagendra Gajjar

Department of Electronics and Communication Engineering, Nirma University, Ahmedabad, Gujarat, India
12mece31@nirmauni.ac.in,nagendra.gajjar@nirmauni.ac.in

ABSTRACT
The increased demand for higher resolution and detailed SAR imaging builds up a pressure on the processing power
of the existing systems for real time or near real time processing. Exploitation of GPU processing power could
suffice the increasing demands in processing. The processing of initial SAR systems was based on the principles of
Fourier Optics. Lenses provided a real time two-dimensional Fourier transform of the data This document comprises
results and analysis of parallelizing Range Doppler and Chirp scaling algorithms for SAR imaging and comparison
of computational time over traditional CPU and GPU platform. The results shows that RDA in its essence gives
better speed-up than CSA basically due to its less complex manipulations.
Keywords— CUDA, FFT, RDA, CSA, execution time.

1. INTRODUCTION
Synthetic Aperture radar is widely used; especially

due its special benefits like all weather, day and night
imaging capabilities over optical imaging. It finds
applications in environmental monitoring, disaster
management, military and defense, remote sensing etc.
[5-6] Range Doppler and chirp scaling algorithms are
applied to the raw data to produce image in visible
format. However, the process is highly cumbersome
involving large number of computations and difficult for
real time practical realizations.

A further increase in the clock frequency in von
Neumann architecture is no longer feasible and the only
way to increase the processing power is to switch to
alternatives like parallel computing machines. Many
existing SAR processors are designed with special DSP
processors such as TigerSharc TS201 [4], are in fact
very expensive, power consuming and difficult to
implement. The availability of technologies like CUDA
which help exploiting power of the GPUs, algorithms
can be parallelized over such vector machines.

GPU is intended to solve problems involving large
data. The processing capabilities of GPU has increased
drastically over last decade. For several years
programmers used to program GPU using languages
like Cg, GLSL and HLSL to program GPU but such
languages needed high knowledge of hardware and of
Application Programming Interface (API) of the GPU.
With the launch of CUDA and its accelerated libraries,
the NVIDIA CUDA complier (NVCC) and debugger
are available on both Windows and Linux platform.
With the windows platform it can be linked with
Microsoft visual studio and the facilities of debugging
and compiling are available while on Linux it uses
NVCC along with GCC complier to generate
applications. The availability of tools like Visual

Profiler for the GPU accelerated application allows us
to timestamp various kernels executed on GPU and
analyze the program effectively.

We have optimized range Doppler and chirp scaling
algorithms for SAR which provides increased speed up
as compared to the speed up given by [7], which uses
multiple GPU platform utilizing higher resources. On
our part we use a single GPU with a high level of
optimization.

The Radar Remote sensing algorithms involve
function like FFTs, normalizations and convolution or
match filtering in 2 different directions. The basic
process i.e. multiplication and accumulation, is usually
32 bit floating point calculations.

2. ALGORITHMS

2.1 Range Doppler Algorithm
A. Data Specifications
The data is generated by sending the reference signal
from the satellite and collecting the reflected signals
back and transmitting the collected data back to the
earth station.

The data under test here consists of 8k samples of
reflected signals of 16k samples each. Each sample
consists of real and imaginary part.
B. Range Compression

[1]Range compression is done by taking convolution
of the reflected signal with the known reference signal
in time domain. But in frequency domain it comprises
taking 16k point fast Fourier transform (FFT) of each
reflected signal and the reference signal. The reference
signal is then conjugated. Both vectors- data vector and
conjugated reference- are multiplied sample to sample
and then an inverse FFT of the resultant vector is done.
It is then normalized by dividing it with the total number
of FFT points. This process is done for all the 8k
reflected signals.

IJCSC Volume 5 • Number 1 March-Sep 2014 pp. 143-146 ISSN-0973-7391�

144

C. Corner Turn or Matrix transpose
Now the 8k x 16k matrix is transposed by turning

each column is into row and each row into column. This
transposed matrix is then sent for Azimuth
Compression.
D. Azimuth Compression

Azimuth compression involves three steps
which are performed for 16k rows.
1) Calculating number of azimuth replica points
[1]It involves generation of azimuth replica signal by

calculating numbers of azimuth samples for all rows (i.e.
16k rows after taking the transpose). The number of
azimuth samples for each row is calculated depending
upon parameters like beam width of satellite antenna,
velocity of satellite, the distance between the satellite
and the location where the signal is incident, frequency
of operation and chip rate.

2) Calculating replica signal
Once the number of samples is calculated the replica

signal is generated which is an exponential function of
pi, chip rate and square of the pulse repetition
frequency.

3) Match Filtering
Now the convolution in the time domain is carried

out i.e. conjugated multiplication in frequency domain
with 8k FFT points. This process is carried out for all
the 16k rows. Then inverse FFT and normalizations are
carried out.
E. Back Transpose and absolute value

The transpose of the resultant matrix is taken and
absolute value of each sample is calculated and a bit file
is written. The bit file can be imported to an image
viewer.
2.2 Chirp Scaling Algorithm
 Below Figure [12] shows block diagram of the chirp
scaling algorithm.

Fig1: Block Diagram of Chirp Scaling Algorithm

3. EXPERIMENTAL SETUP

The workstation consists of core i7 CPU and 32 GB
of RAM memory with 500 GB of disk memory. The
CPU-GPU link is of PCIe x16 Gen2 and power supply
is 650W switch mode power supply (SMPS).

The GPU device used in the experiment is NVIDIA
GTX770. [2]The specifications are as listed below:

• CUDA Cores: 1536
• Frequency of cores: 1.05 GHz
• Double precision[9] floating point

performance (peak): 134 Gflops.
• Single precision floating point performance

(peak): 3.21 Tflops.
• Total dedicated memory: 4GB GDDR5
• Memory speed: 1.11 Ghz
• Memory interface: 256-bit
• Memory bandwidth: 224.3 Gb/s
• System interface: PCIe x16 Gen3
• ECC memory[10]: Offers protection of

data in memory to enhance data integrity
and reliability for applications. Register
files, L1/L2 caches, shared memory and
DRAM all are ECC
(Error Checking & Correction) protected.

• Parallel Data Cache: This includes a
configurable L1 cache per SMX block and
a unified L2 cache for all of the processor
cores.

• Asynchronous transfer: Turbochargers
system performance by transferring data
over the PCIe bus while the computing
cores are crunching other data

Software platform includes

• Microsoft Visual Studio 2010
• Nvidia Cuda Toolkit 5.5 [11]
• Nvidia Parallel Nsight 3.1

4. PARALLEL IMPLEMENTATION

Each step in itself involves large portion of

instructions that can be parallelized. Below are the steps
for implementing RDA on GPU:-

• CUDA Memory Copy (Host to Device)
copies the complex data and the range
compression replica signal to the device
over PCI express.

• CUDA FFT kernel for range compression
uses cufft library for implementing
complex to complex FFT.

• Range Compression match filter kernel
does match filtering of the data samples.

IJCSC Volume 5 • Number 1 March-Sep 2014 pp. 143-146 ISSN-0973-7391�

145

• Cuda IFFT post range compression
computes inverse FFT using cufft library

• Matrix transpose and normalization kernel
normalize the data vector after inverse FFT
and take matrix transpose.

• Cuda FFT for azimuth compression
computes FFT of transposed matrix using
cufft library.

• Azimuth replica generation kernel
generates the azimuth replica signal in time
domain using complex exponential
function.

• Cuda FFT for Azimuth replica performs
FFT of the replica signal using cufft library.

• Azimuth match filtering kernel does match
filtering in the azimuth direction of the data
vector.

• Cuda IFFT post azimuth compression
kernel computes inverse FFT after azimuth
compression

• Matrix transpose and normalization kernel
normalize the data vector after inverse FFT
post azimuth compression and take matrix
transpose.

• Cuda memory copy (Device to host) copies
the computed image vector to the host
memory.

Steps for applying CSA on GPU:-

• All the constants need to be used into the

algorithm have to be defined in the beginning.
• We need to store the data into some variable by

firstly reading it and making a matrix of that.
• Azimuth FFT does FFT of all data vectors into

the azimuth direction.
• Then we need to multiply the data with H1

Function in this way range scaling will be
done.

• Range FFT does FFT of all data vectors into
the range direction

• Then we need to multiply the data with H2
function and in this way Bulk RCMC is
performed.

• Range IFFT will transform the data back into
the range time azimuth frequency which is
range Doppler domain.

• Then we need to multiply the data with H3
function which indeed does the Angle
Correction

• Then we need to multiply data with the H4
function which indeed does the Azimuth
Compression.

• Azimuth IFFT which transforms the data back
into

• Visualization of results
All these kernels are executed sequentially on the

device when called from the host side. In addition to this
the kernel computations are done in place ensuring
efficient use of device memory.

5. OPTIMIZATION

For the purpose of achieving higher throughput and

peak performance various optimization techniques are
used. It ensures 100% utilization of the GPU cores and
minimum GPU ideal time during the program execution.
A. Block Size and Grid size

Due to linear nature of each reflected sample, a
single dimension block is preferred containing 1024
threads per block. As the number of threads is a multiple
of 32, the efficiency is higher. The wrap schedulers
schedule 32 threads per wrap in the device. [3]Hence the
number of threads being a multiple of 32 ensures that no
core would remain free during any of the wrap.

The grid is also taken in single dimension as an array
of blocks and is decided by the number of total data size
and number of threads per block.
B. Shared memory per block

The access to the global memory of the device is
relatively slow compared to the shared memory per
block. [3]The access to the shared memory is 10x faster
compared to the global memory. But the amount of
shared memory is limited by the size of the cache
memory; hence too much use of the shared memory
restricts the optimization.

But optimized use of shared memory speeds up the
kernel execution thus reduces the execution time. The
optimized amount of the shared memory varies from
device to device and their computation capabilities.
C. Registers per thread

The number of registers per thread also controls the
performance of the processing units. [3]Large number of
registers per thread drastically reduces the performance
but as the registers access is 100x faster than the global
memory access and so the optimized use of registers
increases the performance.
D. Use of constant memory

The constant memory is located in the cache and is
10 x faster than the global memory. The reference signal
is usually placed in the constant memory and hence
increases the performance.
E. Use of special function units (SFU) available in

architecture
The Nvidia Fermi architecture contains special

hardware units to compute mathematical functions like
sine and cosine. The hardware functions calculates up to
8 terms of the required trigonometric series as
compared to the software functions which compute up
to 20 terms, but when the demand for accuracy is of

IJCSC Volume 5 • Number 1 March-Sep 2014 pp. 143-146 ISSN-0973-7391�

146

single precision floating point the SFU can provide high
performance compared to the software functions.
F. Use of CUFFT and NPP library of NVIDIA

The use of highly accelerated libraries like CUFFT
and NPP available with CUDA toolkit provides a high
level of optimization. The CUFFT library has functions
for implementing 1D, 2D, 3D FFTs. The NPP library
has functions for signal processing like convolution,
scaling, shifting etc.

6. RESULTS AND ANALYSIS

In this section we intend to discuss the results of this

parallel implementation. Section A. shows the CPU and
GPU comparison. which are computed for image of
resolution 4096 x 4096.
G. Comparison of execution time of CPU and GPU

The table shows the execution time in seconds of
various image resolutions for RDA and CSA . As the
amount of data increases, the speed up also increases.
This is due to two basic reasons.

• The overhead of calling the GPU kernel is
divided among a large data.

• The percentage of GPU idle time which is out
of the total execution time gets reduced.

Table 1: execution time of CPU and GPU
platform for RDA

Image
Size

4096 x
4096

8192 x
4096

8192 x
8192

16384 x
8192

CPU
Time

(Seconds)

238.97 350.940 853.896 2108.639

GPU
Time

(Seconds)

0.593 0.858 1.544 2.839

Speed up 403x 409x 553x 748x

Table 2: execution time of CPU and GPU platform for
CSA

Image
Size

4096 x
4096

8192 x
4096

8192 x
8192

16384 x
8192

CPU
Time

(Seconds)

256.65 363.92 923.23 2403.51

GPU
Time

(Seconds)

0.731 1.156 2.142 3.325

Speed up 351x 314x 431x 722x

7. CONCLUSION
Range Doppler and Chirp scaling both are reasonable
approaches for RADARSAT data to its precision
processing. While Chirp scaling algorithm is slightly
more complex and takes more time in its
implementation but promises better resolution in some
extreme cases. Chirp Scaling algorithm is more phase
preserving and it avoids computationally extensive and
complicated interpolation used by the Range Doppler
Algorithm.
REFERENCES

1. Curlander, J.C. and McDonough, R.N., 199 1,
Synthetic Aperture Radar - Systems and Signal
Processing, J. Wiley & Sons, USA.

2. Nvidia Tesla C2070 Whitepaper.
3. Programming Massively parallel processors –

David Kirk, Wen-mei Hwu
4. BabuRao Kodavati, Jagan MohanaRao malla,

Tholada AppaRao, T.Sridher, “Development of
moving target detection algorithm using ADSP
TS201 DSP Processor”, International Journal of
Engineering Science and technology
Vol.2(8),3355-3363,2010

5. M. Soumekh, “Moving target detection in foliage
using along track monopulse synthetic aperture
radar imaging”, IEEE transactions on Image
Processing, Vol. 6, Issue: 8, p 1148 – 1163, Aug
1997.

6. Ritesh Kumar Sharma , B.Saravana Kumar, Nilesh
M. Desai, V.R. Gujraty, “SAR for disaster
management “, IEEE Aerospace and electronic
system magazine, v23, n 6, p 4-9, June 2008

7. Xia Ning, Chunmao Yeh, Bin Zhou, Wei Gao,
Jian Yang “Multiple-GPU Accelerated Range-
Doppler Algorithm for Synthetic Aperture Radar
Imaging”

8. http://en.wikipedia.org/wiki/PCI_Express
9. http://en.wikipedia.org/wiki/Double-

precision_floating-point_format
10. http://en.wikipedia.org/wiki/ECC_memory
11. http://developer.nvidia.com/cuda/cuda-downloads
12. Alberto Moreira,Josef Mittermayer and Rolf

Scheiber “Extended Chirp Scaling Algorithm for
Air- and Spaceborne SAR Data Processing in
Stripmap and ScanSAR Imaging Modes” , IEEE
Transactions On Geoscience And Remote Sensing
,Vol. 34, No. 5,pp.1123-1133,Sepetember 1996.

13. I.G . Cumming and F.H. Wong,” Digital
Processing of Synthetic Aperture Radar Data:
Algorithms and Implementation” Artech House
Publishers, first edition, 2005.

