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ABSTRACT 
The increased demand for higher resolution and detailed SAR imaging builds up a pressure on the processing power 
of the existing systems for real time or near real time processing. Exploitation of GPU processing power could 
suffice the increasing demands in processing. The processing of initial SAR systems was based on the principles of 
Fourier Optics. Lenses provided a real time two-dimensional Fourier transform of the data This document comprises 
results and analysis of parallelizing Range Doppler and Chirp scaling algorithms for SAR imaging and comparison 
of computational time over traditional CPU and GPU platform. The results shows that RDA in its essence gives 
better speed-up than CSA basically due to its less complex manipulations. 
Keywords— CUDA, FFT, RDA, CSA, execution time. 

 
1. INTRODUCTION 
Synthetic Aperture radar is widely used; especially 

due its special benefits like all weather, day and night 
imaging capabilities over optical imaging. It finds 
applications in environmental monitoring, disaster 
management, military and defense, remote sensing etc. 
[5-6] Range Doppler and chirp scaling algorithms are 
applied to the raw data to produce image in visible 
format. However, the process is highly cumbersome 
involving large number of computations and difficult for 
real time practical realizations. 

A further increase in the clock frequency in von 
Neumann architecture is no longer feasible and the only 
way to increase the processing power is to switch to 
alternatives like parallel computing machines. Many 
existing SAR processors are designed with special DSP 
processors such as TigerSharc TS201 [4], are in fact 
very expensive, power consuming and difficult to 
implement. The availability of technologies like CUDA 
which help exploiting power of the GPUs, algorithms 
can be parallelized over such vector machines. 

GPU is intended to solve problems involving large 
data. The processing capabilities of GPU has increased 
drastically over last decade. For several years 
programmers used to program GPU using languages 
like Cg, GLSL and HLSL to program GPU but such 
languages needed high knowledge of  hardware and of 
Application Programming Interface (API) of the GPU. 
With the launch of CUDA and its accelerated libraries, 
the NVIDIA CUDA complier (NVCC) and debugger  
are available on both Windows and Linux platform. 
With the windows platform it can be linked with 
Microsoft visual studio and the facilities of debugging 
and compiling are available while on Linux it uses 
NVCC along with GCC complier to generate 
applications. The availability of tools like Visual 

Profiler for the GPU accelerated application allows us 
to timestamp various kernels executed on GPU and 
analyze the program effectively. 

We have optimized range Doppler and chirp scaling 
algorithms for SAR which provides increased speed up 
as compared to the speed up given by [7], which uses 
multiple GPU platform utilizing higher resources. On 
our part we use a single GPU with a high level of 
optimization. 

The Radar Remote sensing algorithms involve 
function like FFTs, normalizations and convolution or 
match filtering in 2 different directions. The basic 
process i.e. multiplication and accumulation, is usually 
32 bit floating point calculations. 

 
2. ALGORITHMS 

2.1 Range Doppler Algorithm 
A. Data Specifications 
The data is generated by sending the reference signal 
from the satellite and collecting the reflected signals 
back and transmitting the collected data back to the 
earth station. 

The data under test here consists of 8k samples of 
reflected signals of 16k samples each. Each sample 
consists of real and imaginary part. 
B. Range Compression 

[1]Range compression is done by taking convolution 
of the reflected signal with the known reference signal 
in time domain. But in frequency domain it comprises 
taking 16k point fast Fourier transform (FFT) of each 
reflected signal and the reference signal. The reference 
signal is then conjugated. Both vectors- data vector and 
conjugated reference- are multiplied sample to sample 
and then an inverse FFT of the resultant vector is done. 
It is then normalized by dividing it with the total number 
of FFT points. This process is done for all the 8k 
reflected signals. 
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C. Corner Turn or Matrix transpose 
Now the 8k x 16k matrix is transposed by turning 

each column is into row and each row into column. This 
transposed matrix is then sent for Azimuth 
Compression. 
D. Azimuth Compression 

Azimuth compression involves three steps 
which are performed for 16k rows.   
1) Calculating number of azimuth replica points 
[1]It involves generation of azimuth replica signal by 

calculating numbers of azimuth samples for all rows (i.e. 
16k rows after taking the transpose). The number of 
azimuth samples for each row is calculated depending 
upon parameters like beam width of satellite antenna, 
velocity of satellite, the distance between the satellite 
and the location where the signal is incident, frequency 
of operation and chip rate. 

2) Calculating replica signal 
Once the number of samples is calculated the replica 

signal is generated which is an exponential function of 
pi, chip rate and square of the pulse repetition 
frequency. 

3) Match Filtering 
Now the convolution in the time domain is carried 

out i.e. conjugated multiplication in frequency domain 
with 8k FFT points. This process is carried out for all 
the 16k rows. Then inverse FFT and normalizations are 
carried out. 
E.  Back Transpose and absolute value 

The transpose of the resultant matrix is taken and 
absolute value of each sample is calculated and a bit file 
is written. The bit file can be imported to an image 
viewer. 
2.2 Chirp Scaling Algorithm 
    Below Figure [12] shows block diagram of the chirp 
scaling algorithm. 

 

 
Fig1: Block Diagram of Chirp Scaling Algorithm 

 
 

3. EXPERIMENTAL SETUP 
 

The workstation consists of core i7 CPU and 32 GB 
of RAM memory with 500 GB of disk memory. The 
CPU-GPU link is of PCIe x16 Gen2 and power supply 
is 650W switch mode power supply (SMPS). 

The GPU device used in the experiment is NVIDIA 
GTX770. [2]The specifications are as listed below: 

• CUDA Cores: 1536  
• Frequency of cores: 1.05 GHz 
• Double precision[9] floating point 

performance (peak): 134 Gflops. 
• Single precision floating point performance 

(peak): 3.21 Tflops. 
• Total dedicated memory: 4GB GDDR5 
• Memory speed: 1.11 Ghz 
• Memory interface: 256-bit 
• Memory bandwidth: 224.3 Gb/s 
• System interface: PCIe x16 Gen3 
• ECC memory[10]: Offers protection of 

data in memory to enhance data integrity 
and reliability for applications. Register 
files, L1/L2 caches, shared memory and 
DRAM all are ECC 
(Error Checking & Correction) protected. 

• Parallel Data Cache: This includes a 
configurable L1 cache per SMX block and 
a unified L2 cache for all of the processor 
cores. 

• Asynchronous transfer: Turbochargers 
system performance by transferring data 
over the PCIe bus while the computing 
cores are crunching other data 

 
Software platform includes  

• Microsoft Visual Studio 2010 
• Nvidia Cuda Toolkit 5.5 [11] 
• Nvidia Parallel Nsight 3.1 

 
 
4. PARALLEL IMPLEMENTATION 

 
Each step in itself involves large portion of 

instructions that can be parallelized. Below are the steps 
for implementing RDA on GPU:- 

• CUDA Memory Copy (Host to Device) 
copies the complex data and the range 
compression replica signal to the device 
over PCI express. 

• CUDA FFT kernel for range compression 
uses cufft library for implementing 
complex to complex FFT. 

• Range Compression match filter kernel 
does match filtering of the data samples. 
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• Cuda IFFT post range compression 
computes inverse FFT using cufft library 

• Matrix transpose and normalization kernel 
normalize the data vector after inverse FFT 
and take matrix transpose. 

• Cuda FFT for azimuth compression 
computes FFT of transposed matrix using 
cufft library. 

• Azimuth replica generation kernel 
generates the azimuth replica signal in time 
domain using complex exponential 
function. 

• Cuda FFT for Azimuth replica performs 
FFT of the replica signal using cufft library. 

• Azimuth match filtering kernel does match 
filtering in the azimuth direction of the data 
vector. 

• Cuda IFFT post azimuth compression 
kernel computes inverse FFT after azimuth 
compression 

• Matrix transpose and normalization kernel 
normalize the data vector after inverse FFT 
post azimuth compression and take matrix 
transpose.  

• Cuda memory copy (Device to host) copies 
the computed image vector to the host 
memory. 

 
Steps for applying CSA on GPU:- 
 
• All the constants need to be used into the 

algorithm have to be defined in the beginning.  
• We need to store the data into some variable by 

firstly reading it and making a matrix of that. 
• Azimuth FFT does FFT of all data vectors into 

the azimuth direction. 
• Then we need to multiply the data with H1 

Function in this way range scaling will be 
done. 

• Range FFT does FFT of all data vectors into 
the range direction 

• Then we need to multiply the data with H2 
function and in this way Bulk RCMC is 
performed. 

• Range IFFT will transform the data back into 
the range time azimuth frequency which is 
range Doppler domain. 

• Then we need to multiply the data with H3 
function which indeed does the Angle 
Correction  

• Then we need to multiply data with the H4 
function which indeed does the Azimuth 
Compression. 

• Azimuth IFFT which transforms the data back 
into  

• Visualization of results 
All these kernels are executed sequentially on the 

device when called from the host side. In addition to this 
the kernel computations are done in place ensuring 
efficient use of device memory.  

 
5. OPTIMIZATION 

 
For the purpose of achieving higher throughput and 

peak performance various optimization techniques are 
used. It ensures 100% utilization of the GPU cores and 
minimum GPU ideal time during the program execution. 
A. Block Size and Grid size 

Due to linear nature of each reflected sample, a 
single dimension block is preferred containing 1024 
threads per block. As the number of threads is a multiple 
of 32, the efficiency is higher. The wrap schedulers 
schedule 32 threads per wrap in the device. [3]Hence the 
number of threads being a multiple of 32 ensures that no 
core would remain free during any of the wrap.  

The grid is also taken in single dimension as an array 
of blocks and is decided by the number of total data size 
and number of threads per block. 
B. Shared memory per block 

The access to the global memory of the device is 
relatively slow compared to the shared memory per 
block. [3]The access to the shared memory is 10x faster 
compared to the global memory. But the amount of 
shared memory is limited by the size of the cache 
memory; hence too much use of the shared memory 
restricts the optimization.  

But optimized use of shared memory speeds up the 
kernel execution thus reduces the execution time. The 
optimized amount of the shared memory varies from 
device to device and their computation capabilities. 
C. Registers per thread 

The number of registers per thread also controls the 
performance of the processing units. [3]Large number of 
registers per thread drastically reduces the performance 
but as the registers access is 100x faster than the global 
memory access and so the optimized use of registers 
increases the performance. 
D. Use of constant memory 

The constant memory is located in the cache and is 
10 x faster than the global memory. The reference signal 
is usually placed in the constant memory and hence 
increases the performance. 
E. Use of special function units (SFU) available in 

architecture 
The Nvidia Fermi architecture contains special 

hardware units to compute mathematical functions like 
sine and cosine. The hardware functions calculates up to 
8 terms of the required trigonometric  series as 
compared to the software functions which compute up 
to 20 terms, but when the demand for accuracy is of 
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single precision floating point the SFU can provide high 
performance compared to the software functions. 
F. Use of CUFFT and NPP library of NVIDIA 

The use of highly accelerated libraries like CUFFT 
and NPP available with CUDA toolkit provides a high 
level of optimization. The CUFFT library has functions 
for implementing 1D, 2D, 3D FFTs. The NPP library 
has functions for signal processing like convolution, 
scaling, shifting etc.  

 
6. RESULTS AND ANALYSIS 

 
In this section we intend to discuss the results of this 

parallel implementation. Section A. shows the CPU and 
GPU comparison. which are computed for image of 
resolution 4096 x 4096.    
G. Comparison of execution time of CPU and GPU 

The table shows the execution time in seconds of 
various image resolutions for RDA and CSA . As the 
amount of data increases, the speed up also increases. 
This is due to two basic reasons. 

• The overhead of calling the GPU kernel is 
divided among a large data. 

• The percentage of GPU idle time which is out 
of the total execution time gets reduced. 
 
 
Table 1: execution time of CPU and GPU 
platform for RDA 
 

Image 
Size 

4096 x 
4096 

8192 x 
4096 

8192 x 
8192 

16384 x 
8192 

CPU 
Time 

(Seconds) 

238.97 350.940 853.896 2108.639 

GPU 
Time 

(Seconds) 

0.593 0.858 1.544 2.839 

Speed up 403x 409x 553x 748x 
 

Table 2: execution time of CPU and GPU platform for 
CSA  

Image 
Size 

4096 x 
4096 

8192 x 
4096 

8192 x 
8192 

16384 x 
8192 

CPU 
Time 

(Seconds) 

256.65 363.92 923.23 2403.51 

GPU 
Time 

(Seconds) 

0.731 1.156 2.142 3.325 

Speed up 351x 314x 431x 722x 

7. CONCLUSION 
Range Doppler and Chirp scaling both are reasonable 
approaches for RADARSAT data to its precision 
processing. While Chirp scaling algorithm is slightly 
more complex and takes more time in its 
implementation but promises better resolution in some 
extreme cases. Chirp Scaling algorithm is more phase 
preserving and it avoids computationally extensive and 
complicated interpolation used by the Range Doppler 
Algorithm. 
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